Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements
نویسندگان
چکیده
This paper presents several novel theoretical results regarding the recovery of a low-rank matrix from just a few measurements consisting of linear combinations of the matrix entries. We show that properly constrained nuclear-normminimization stably recovers a low-rank matrix from a constant number of noisy measurements per degree of freedom; this seems to be the first result of this nature. Further, the recovery error from noisy data is within a constant of three targets: 1) the minimax risk, 2) an ‘oracle’ error that would be available if the column space of the matrix were known, and 3) a more adaptive ‘oracle’ error which would be available with the knowledge of the column space corresponding to the part of the matrix that stands above the noise. Lastly, the error bounds regarding low-rank matrices are extended to provide an error bound when the matrix has full rank with decaying singular values. The analysis in this paper is based on the restricted isometry property (RIP) introduced in [6] for vectors, and in [22] for matrices.
منابع مشابه
Simple bounds for recovering low-complexity models
This note presents a unified analysis of the recovery of simple objects from random linear measurements. When the linear functionals are Gaussian, we show that an s-sparse vector in R can be efficiently recovered from 2s log n measurements with high probability and a rank r, n×n matrix can be efficiently recovered from r(6n − 5r) measurements with high probability. For sparse vectors, this is w...
متن کاملLow rank tensor recovery via iterative hard thresholding
We study extensions of compressive sensing and low rank matrix recovery (matrix completion) to the recovery of low rank tensors of higher order from a small number of linear measurements. While the theoretical understanding of low rank matrix recovery is already well-developed, only few contributions on the low rank tensor recovery problem are available so far. In this paper, we introduce versi...
متن کاملLow rank matrix recovery from rank one measurements
We study the recovery of Hermitian low rank matrices X ∈ Cn×n from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form ajaj for some measurement vectors a1, . . . , am, i.e., the measurements are given by yj = tr(Xaja ∗ j ). The case where the matrix X = xx ∗ to...
متن کاملLow rank Multivariate regression
We consider in this paper the multivariate regression problem, when the target regression matrix A is close to a low rank matrix. Our primary interest is in on the practical case where the variance of the noise is unknown. Our main contribution is to propose in this setting a criterion to select among a family of low rank estimators and prove a non-asymptotic oracle inequality for the resulting...
متن کاملLow-rank matrix recovery via rank one tight frame measurements
The task of reconstructing a low rank matrix from incomplete linear measurements arises in areas such as machine learning, quantum state tomography and in the phase retrieval problem. In this note, we study the particular setup that the measurements are taken with respect to rank one matrices constructed from the elements of a random tight frame. We consider a convex optimization approach and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1001.0339 شماره
صفحات -
تاریخ انتشار 2009